
DSC 204A: Scalable Data Systems

Fall 2025

1

https://hao-ai-lab.github.io/dsc204a-f25/

Staff
Instructor: Hao Zhang

TAs: Mingjia Huo, Yuxuan Zhang

@haozhangml

haozhang@ucsd.edu

@haoailab

https://twitter.com/haozhangml

Where We Are

Foundations of Data Systems

Cloud

Machine Learning Systems

Big Data

1980 - 2000

3

Q2: What does exponent and fraction control?

• Exponent controls: range, offset

• Fraction controls: actual value, precision

4

• Float:

• Standard IEEE format for single (aka binary32):

Digital Representation of Data: Bias

Why?

Q3: What is the difference between BF16 and FP16?

Less exponent -> smaller range -> easier to overflow

more exponent -> larger range -> harder to overflow

More fraction -> more precise

less fraction -> less precise

Floating-point Representation

Q: How to represent 0?

Floating-point Number: normal vs. subnormal

Q: What is the minimum positive value?

What is the minimum positive value?

Some Special Values

Summary of fp32

Exercise

• Sign: -

• Exponent

• Bias:24 − 1 = 1510

• 100012 − 1510 = 1710 − 1510 = 210

• Fraction

• 11000000002 = 0.7510

• Answer: − 1 + 0.75 × 22 = −7.1010

Exercise

What is Decimal 2.5 in BF16?

• 2.5 = 1.25 × 21

• Sign: +

• Exponent: bias is 27 − 1 = 127

• 𝑥 − 127 = 1; 𝑥 = 12810 = 100000002

• Fraction: 7-bit fraction

• 0.25 = 01000002

Latest FP8

• Exponent width -> Range; Fraction width -> precision

FP4

Why BF16 is better in ML/AI?

1. Precision is enough. ML/AI is error-tolerant (why?)

2. Deep learning is easy to overflow
3. Closer range to fp32

16

Examples in the final exam: FP8

Demystify ChatGPT

Parameters:
350 GB

GPT = +

A few KBs

Disk

str

[0, 500, 32768, 1008, 922, ….] List[integers]

[0, 25116, 1234, 5984, 6, …]
List[integers]

str

Foundation of Data Systems

• Computer Organization

• Representation of data

• processors, memory, storage

• OS basics

• Process, scheduling

• Memory

19

Basics of Processors

• Processor: Hardware to orchestrate and execute instructions to

manipulate data as specified by a program

• Examples: CPU, GPU, FPGA, TPU, embedded, etc.

• ISA (Instruction Set Architecture):

• The vocabulary of commands of a processor

Program in PL

Compile/Interpret

Program in Assembly Language

Assemble

Machine code tied to ISA

Run on processor

20

Basics of Processors

• Most common approach: load-store architecture

• Registers: Tiny local memory (“scratch space”) on proc. into which

instructions and data are copied

• ISA specifies bit length/format of machine code commands

• ISA has several commands to manipulate register contents

Q: How does a processor execute machine code?

21

Instruction

Register names

addq %rbx, %rax

rax += rbx

is

Bus interface

ALU

Register file

CPU chip

%rax
%rbx

How Fast is Processor (CPU and GPU)

• Instruction / second: number of instructions a processor can do

• Data science: We care more about computation on floating

point numbers

• FLOPS: number of floating point operations a process can do

Moore’s Law

The Real Problem?

CPU

Magnetic Hard Disk Drive (HDD)

100 GFLOPs/s

1. Assume we use 0.5s to perform 50 FLOPs
2. We need to read 50x2=100 GB in the rest of 0.5s to keep the CPU busy
3. We need the CPU to read at a speed of 100GB / 0.5s = 200 GB/s

80 – 160 MB/s

25

Memory/Storage Hierarchy

Flash Storage

CPU

Main
Memory

Magnetic Hard Disk Drive (HDD)

Cache

Non-Volatile RAM

~GB/s

~10GB/s

~100GB/s
~MBs

 ~$2/MB

~10GBs

 ~$5/GB

~TBs

~$200/TB

~PBs; ~$10/TB

~10TBs

~$30/TB~200MB/s

~50MB/s

26

Writing & Reading Memory Instructions

• Write

• Transfer data from memory to CPU

movq %rax, %rsp

• “Store” operation

• Read

• Transfer data from CPU to memory

movq %rsp, %rax

• “Load” operation

27

Processor

Bus

Control

Unit

Arithmetic

& Logic

Unit

Caches

Dynamic Random

Access Memory

(DRAM)

Input

Devices

Output

Devices
Secondary Storage

(e.g., Magnetic hard

disk, Flash SSD, etc.)

Store; Retrieve

Store; Retrieve

Input; Output; Retrieve

Retrieve;

Process

Registers

Abstract Computer Parts and Data

28

Bus Structure Connecting CPU and Memory

• A bus is a collection of parallel wires that carry address, data, and control

signals.

• Buses are typically shared by multiple devices.

Main
memory

I/O
bridge

Bus interface

ALU

Register file

CPU chip

System bus Memory bus

29

Memory Read Transaction (1)

• CPU places address A on the memory bus.

ALU

Register file

Bus interface

A
0

Ax

Main memory
I/O bridge

%rax

Load operation: movq A, %rax

30

Memory Read Transaction (2)

• Main memory reads A from the memory bus,

retrieves word x, and places it on the bus.

ALU

Register file

Bus interface

x 0

Ax

Main
memory

%rax

I/O bridge

Load operation: movq A, %rax

31

Memory Read Transaction (3)

• CPU reads word x from the bus and copies it into register %rax.

ALU

Register file

Bus interface x

Main memory
0

A

%rax

I/O bridge

Load operation: movq A, %rax

x

32

Memory Write Transaction (1)

• CPU places address A on bus. Main memory reads it and

waits for the corresponding data word to arrive.

y
ALU

Register file

Bus interface

A

Main memory
0

A

%rax

I/O bridge

Store operation: movq %rax, A

33

Memory Write Transaction (2)

• CPU places data word y on the bus.

y
ALU

Register file

Bus interface

y

Main memory
0

A

%rax

I/O bridge

Store operation: movq %rax, A

34

Memory Write Transaction (3)

• Main memory reads data word y from the bus

and stores it at address A.

y
ALU

Register file

Bus interface y

Main memory
0

A

%rax

I/O bridge

Store operation: movq %rax, A

35

Basics of Processors

• Types of ISA commands to manipulate register contents:

• Memory access: load (copy bytes from a DRAM address to

register); store (reverse); put constant

• Arithmetic & logic on data items in registers: add/multiply/etc.;

bitwise ops; compare, etc.; handled by ALU

• Control flow (branch, call, etc.); handled by CU

• Caches: Small local memory to buffer instructions/data

If interested in more details: https://www.youtube.com/watch?v=cNN_tTXABUA

Q: How does a processor execute machine code?

https://www.youtube.com/watch?v=cNN_tTXABUA

What is GPT doing?

Parameters:
350 GB

GPT = +

A few KBs

Disk

[0, 500, 32768, 1008, 922, ….] List[integers]

[0, 25116, 1234, 5984, 6, …]

List[integers]

37

Example

Bus

CU ALU

Caches

DRAM

Disk

Store; Retrieve

Store; Retrieve

Retrieve;

Process
Registers

CPU

Commands interpreted

Arithmetic done within Processors

Monitor
I/O for Display I/O for code I/O for data

But, how we can make this fast? What are

potential problems here?

38

The CPU-Memory Gap

The gap widens between DRAM, disk, and CPU speeds.

0.0

0.1

1.0

10.0

100.0

1,000.0

10,000.0

100,000.0

1,000,000.0

10,000,000.0

100,000,000.0

1985 1990 1995 2000 2003 2005 2010 2015

T
im

e
 (

n
s

)

Year

Disk seek time SSD access time

DRAM access time SRAM access time

CPU cycle time Effective CPU cycle time

DRAM

CPU

SSD

Disk

Our problem, Simplified

To fill the gap: memory hierarchy

40

Core Question behind Many System Research

How exactly memory hierarchy solves the gap?

How?

41

Locality

• The key to bridging this CPU-Memory gap is an important

property of computer programs known as locality.

42

copyij v.s copyji: copy a 2048 X 2048 integer array

4.3 milliseconds

81.8 milliseconds

43

Locality

• Principle of Locality: Many Programs tend to use data and

instructions with addresses near or equal to those they have used

recently.

• Temporal locality:

• Recently referenced items are likely

to be referenced again in the near future

• Spatial locality:

• Items with nearby addresses tend

to be referenced close together in time

44

Locality Example

• Data references

• Reference array elements in succession (stride-1 reference pattern).

• Reference variable sum each iteration.

• Instruction references

• Reference instructions in sequence.

• Cycle through loop repeatedly.

num_list = [1, 2, 3, 4, 5, 7]

sum = 0;

for (x in num_list)

sum += x;

return sum;

Spatial or Temporal
Locality?

temporal

spatial
temporal

spatial

45

Qualitative Estimates of Locality

Question: Does this function have good locality with respect to array a?

int sum_array_rows(int a[M][N])

{

int i, j, sum = 0;

for (i = 0; i < M; i++)

for (j = 0; j < N; j++)

sum += a[i][j];

return sum;

}

Answer: yes

Assuming row-major
array

• • •

a

[0]

[0]

a

[0]

[N-1]

• • •

a

[1]

[0]

a

[1]

[N-1]

• • •

a

[M-1]

[0]

a

[M-1]

[N-1]

• • •

46

Locality Example

• Question: Does this function have good locality with respect to array a?

int sum_array_cols(int a[M][N])

{

int i, j, sum = 0;

for (j = 0; j < N; j++)

for (i = 0; i < M; i++)

sum += a[i][j];

return sum;

}

Answer: no, unless…

M is very small

• • •

a

[0]

[0]

a

[0]

[N-1]

• • •

a

[1]

[0]

a

[1]

[N-1]

• • •

a

[M-1]

[0]

a

[M-1]

[N-1]

• • •

	Slide 1: DSC 204A: Scalable Data Systems Fall 2025
	Slide 2: Where We Are
	Slide 3: Q2: What does exponent and fraction control?
	Slide 4: Digital Representation of Data: Bias
	Slide 5: Q3: What is the difference between BF16 and FP16?
	Slide 6: Floating-point Representation
	Slide 7: Floating-point Number: normal vs. subnormal
	Slide 8: What is the minimum positive value?
	Slide 9: Some Special Values
	Slide 10: Summary of fp32
	Slide 11: Exercise
	Slide 12: Exercise
	Slide 13: Latest FP8
	Slide 14: FP4
	Slide 15: Why BF16 is better in ML/AI?
	Slide 16: Examples in the final exam: FP8
	Slide 17: Demystify ChatGPT
	Slide 18: Foundation of Data Systems
	Slide 19: Basics of Processors
	Slide 20: Basics of Processors
	Slide 21: Instruction
	Slide 22: How Fast is Processor (CPU and GPU)
	Slide 23: Moore’s Law
	Slide 24: The Real Problem?
	Slide 25: Memory/Storage Hierarchy
	Slide 26: Writing & Reading Memory Instructions
	Slide 27: Abstract Computer Parts and Data
	Slide 28: Bus Structure Connecting CPU and Memory
	Slide 29: Memory Read Transaction (1)
	Slide 30: Memory Read Transaction (2)
	Slide 31: Memory Read Transaction (3)
	Slide 32: Memory Write Transaction (1)
	Slide 33: Memory Write Transaction (2)
	Slide 34: Memory Write Transaction (3)
	Slide 35: Basics of Processors
	Slide 36: What is GPT doing?
	Slide 37: Example
	Slide 38: The CPU-Memory Gap
	Slide 39: Our problem, Simplified
	Slide 40: Core Question behind Many System Research
	Slide 41: Locality
	Slide 42: copyij v.s copyji: copy a 2048 X 2048 integer array
	Slide 43: Locality
	Slide 44: Locality Example
	Slide 45: Qualitative Estimates of Locality
	Slide 46: Locality Example

