https://hao-ai-1lab.github.1o/dsc204a-125/

DSC 204A: Scalable Data Systems
Fall 2025

Staift
Instructor: Hao Zhang
TAs: Mingjia Huo, Yuxuan Zhang

¢ @haozhangml) @haoailab
haozhang@ucsd. edu

https://twitter.com/haozhangml

Where We Are

Machine Learning Systems

Big Data

Foundations of Data Systems 1980 - 2000

Q2: What does exponent and fraction control?

®* Exponent controls: range, offset

®* Fraction conftrols: actual value, precision

5|gn exponent (8 bItS) fraction (23 bits)

31 30 23 22 (bit index)

Digital Representation of Data: Bias

* Float:
* Standard |EEE format for single (aka binary32):

5|gn exponent (8 blts) fraction (23 bits)
nmlllllmmlmmmmmmmmmmmmm
31 30 23 22 (bit index)
Why?

23
o w T 143 b
1=1

(—1)? x 28471270 5 (1 +1-272%) = (1/8) x (1 + (1/4)) = 0.15625

Q3: What is the difference between BF16 and FP16¢

IEEE half-precision 16-bit float
sign exponent (5 bit) fraction (10 bit)
L | || |
o(o0|1]1] 0]/ 0o HNONEEEONEOEEOCRNONEONNGRNONEON T Loatl6

15 14 10 9 0

Less exponent -> smaller range -> easier to overflow
More fraction -> more precise

bfloat16
sign exponent (8 bit) fraction (7 bit)
| | |
ojlo |1 1|1 1|1 0] 0 NSNS DT loatl6

15 14 /7 6 0
more exponent -> larger range -> harder to overtlow

less fraction -> less precise

Floating-point Representation

5|gn exponent (8 bItS) fraction (23 bits)
EIEIIIIIEIEEIEEEEEEEEEEEEEEEEEEEEE
31 30 23 22 (bit index)

(_1)sign « 9exponent—127 o (1 Zb23—i2_

Q: How to represent 02

Floating-point Number: normal vs. subnormal

Sign 8 bit Exponent 23 bit Fraction
Should have been (-1)sign x (1 + Fraction) x 20-127
(-1)Si9n X (1 + Fraction) x 2Exponent-127 But we force to be (_1)Sign x Fraction x 21'1270
(Normal Numbers, Exponent0) (Subnormal Numbers, Exponent=0)

0

0.265625 = 1.0625 x 2-2 = (1 + 0.0625) x 2125-127 0=0 x 2-126

Q: What is the minimum positive value?

What is the minimum positive valuee¢

Sign 8 bit Exponent 23 bit Fraction
(-1)sion x (1 + Fraction) x 2Exponent-127 (-1)sion x Fraction x 21-127¢)
(Normal Numbers, Exponentz0) (Subnormal Numbers, Exponent=0)

0/0/0/0/0|0|0|0j0|0|0|0

%000000000000000000
1 0 0 2-23

2-126 = (1 4 Q) x 21-127 D-149 — 9-23 « D-126

Some Special Values

Sign 8 bit Exponent 23 bit Fraction
(-1)si9n x (1 + Fraction) x 2Exponent-127 (-1)sion x Fraction x 21-127¢)
(Normal Numbers, Exponent£0) (Subnormal Numbers, Exponent=0)

0/0/0/0/0|0|0|0/0|0|0|0/0

+oo (positive infinity) NaN (Not a Number)

0/0|0|0|0/0/0/0|0j0j0|0|0|0j0j0j0j00/0/0(0j0
-00 (negative |nf|n|ty) Q much waste. Revisit In fp8.

Summary of fp32
RRRREARERE

Sign 8 bit Exponent

23 bit Fraction

Exponent Fraction=0 | Fractionz0 Equation
004=0 ()| 20 | subnorma (-1)sion x Fraction x 21-127
O1n..FEn=1..254 normal (-1)sion x (1 + Fraction) x 2Exponent-127
FFh = 255 Q £INF NaN
subnormal values normal values
| | | | | | | | | | L,
| | | | | | | | | | |
+0 2-149 (1-2-28) 2-126 D-126 (1+1-2-28)x2127

Exercilse

TIGIGIG 1 1/0]o]ojololo]a

Sign 5 bit Exponent 10 bit Fraction

* Sign: -
* Exponent
* Bias:2* —1 =15,
e 10001, — 15,9 = 179 — 1579 = 24,
* Fraction
e 1100000000, = 0.754,
* Answer: —(1 4+ 0.75) x 24 =—7.104,

(-1)sion x (1 + Fraction) x 2Exponent-127

Fxercise Google Brain Float (BF16)

What is Decimal 2.5 in BF16%¢
e 25=1.25 x 21
® Sign: +
* Exponent: bicsis 2”7 —1 = 127
e x —127 = 1;x = 128,, = 10000000,
* Fraction: /7-bitf fraction
e 0.25 = 0100000,

Sign 8 bit Exponent 7 bit Fraction

Latest FP8

®* Exponent width -> Range; Fraction width -> precision

IEEE 754 Single Precision 32-bit Float (IEEE FP32) Exg)?t':)*"t Fr(z?tt;;m
ERRRRRERR 3 23

IEEE 754 Half Precision 16-bit Float (IEEE FP16)

NN 5 10

Nvidia FP8 (E4M3)

- * FP8 E4AM3 does not have INF, and S.1111.1112 is used for NaN. 4 3
* Largest FP8 E4M3 normal value is S.1111.1102=448.

Nvidia FP8 (E5SM2) for gradient in the backward

* FP8 E5M2 have INF (S.11111.002) and NaN (S.11111.XX>2). 5
* Largest FP8 E5M2 normal value is S.11110.11,=57344. S

Total
(bits)

32

16

FP4

NVIDIA. 2025-9-30

Int rOdUCing NVFP4 fOr EffiCient and Pretraining Large Language Models with NVFP4
Accurate Low-Precision Inference NVIDIA

Abstract. Large Language Models (LLMs) today are powerful problem solvers across many domains, and they

continue to get stronger as they scale in model size, training set size, and training set quality, as shown by extensive
research and experimentation across the industry. Training a frontier model today requires on the order of tens
to hundreds of yottaflops, which is a massive investment of time, compute, and energy. Improving pretraining
efficiency is therefore essential to enable the next generation of even more capable LLMs. While 8-bit floating point
(FP8) training is now widely adopted, transitioning to even narrower precision, such as 4-bit floating point (FP4),
could unlock additional improvements in computational speed and resource utilization. However, quantization at
this level poses challenges to training stability, convergence, and implementation, notably for large-scale models
trained on long token horizons.

In this study, we introduce a novel approach for stable and accurate training of large language models (LLMs)
using the NVFP4 format. Our method integrates Random Hadamard transforms (RHT) to bound block-level
outliers, employs a two-dimensional quantization scheme for consistent representations across both the forward
and backward passes, utilizes stochastic rounding for unbiased gradient estimation, and incorporates selective
high-precision layers. We validate our approach by training a 12-billion-parameter model on 10 trillion tokens —
the longest publicly documented training run in 4-bit precision to date. Our results show that the model trained
with our NVFP4-based pretraining technique achieves training loss and downstream task accuracies comparable to
an FP8 baseline. For instance, the model attains an MMLU-pro accuracy of 62.58%, nearly matching the 62.62%
accuracy achieved through FP8 pretraining. These findings highlight that NVFP4, when combined with our training
approach, represents a major step forward in narrow-precision LLM training algorithms.

Code: Transformer Engine support for NVFP4 training.

1. Introduction

183321 The rapid expansion of large language models (LLMs) has increased the demand for more efficient,

numerical formats to lower computational cost, memory demand, and energy consumption during training.
8-bit floating point (FP8 and MXFP8) has emerged as a popular data type for accelerated training of
LLMs (Micikevicius et al., 2022; DeepSeek-Al et al., 2024; Mishra et al., 2025). Recent advances in
narrow-precision hardware (NVIDIA Blackwell, 2024) have positioned 4-bit floating point (FP4) as the
next logical step (Tseng et al., 2025b; Chmiel et al., 2025; Wang et al., 2025; Chen et al., 2025; Castro

e 1T
- i1l LY ¥ ¥ 3y ‘4.-.--.’3_ H A2 -
S T 'l' !!!!I'... I ...‘-—“;;:if“rfil

Pt i 1§ il W | gl 1

[V

509.25149v1 [cs.CL] 29 Sep 2025

Why BF16 is better in ML/AIZ

1.
2.
3

Precision is enough. ML/Al is error-tolerant (why?¢)
Deep learning Is easy to overflow
Closer range to fp32

sign

15

sign

31

sign

15

IEEE half-precision 16-bit float

exponent (5 bit)

fraction (10 bit)

0|1]1|0]| o HONEECREOEEGREGEENEOENGEEGE T1loatl6b

14

10 9

exponent (8 bit)

0

IEEE 754 single-precision 32-bit float

fraction (23 bit)

float32

O | i | RS S AR T S ORI 0 g SORY L LN G) o B N IS S O o R 1St S0 I Y 1 5o I N o I I) (O o S WA o i ! o I8 (R o SR Y ¢ Y OO0 JN DT S o SO 119 0 S I o

30

exponent (8 bit)

23 22

bfloat16

fraction (7 bit)

I |

]

o111]1]1] 0|0 EENSEEEEGEEGNEGEN DTfloatlb

14

7 6

0

0

16

Examples in the final exam: FP8

1 4-bits

frac

3-bits

Demystity ChatGPT

GPT

@ You

| cannot believe Artificial general intelligence is just a few Python files and 350GB of

weights

l

[0, 500, 32768, 1008, 922, ...]

1

Disk

2

PY

A few KBs

-+ —_

Parameters:

350 GB

!

[0, 25116, 1234, 5984, 6, ...]

Q ChatGPT

!

It's understandable to be amazed by the progress in artificial intelligence, especially

when considering something as advanced as Artificial General Intelligence (AGI).

However, the reality is a bit more

dataset.

complex than just a few Python files and a large

str

List[integers]

List{integers]

str

Foundation of Data Systems

* Computer Organization

®* Representation of data

® processors, memory, storage
* OS basics

®* Process, scheduling

* Memory

19

Basics of Processors

® Processor: Hardware 1o orchestrate and execute insfructions 1o
manipulate data as specified by a program

* Examples: CPU, GPU, FPGA, TPU, embedded, etc.
® [SA (Instruction Set Architecture):
®* The vocabulary of commands of a processor

Program in PL

Compile/Interpret ‘

Program in Assembly Language

Assemble ‘

28483
a0483
28483
BR483
50483
BR483
50483
BR483
58483
BR483
50483
00483

=

Machine code tied to ISA

1

Run on processor

20

Basics of Processors

Q: How does a processor execute machine codee

* Most common approach: load-store architecture

® Registers: Tiny local memory (“scratch space”) on proc. info which
INstructions and data are copied

* |SA specifies bit length/format of machine code commands
* [SA has several commands to manipulate register contents

INstruction

CPU chip
Register file Register names
$rax : ALU | ///A\\
Srbx §
z addq %rbx, Z%rax
—_— T~
IS

. rax += rbx
Bus interface

oo

How Fast is Processor (CPU and GPU)

[Ill'\h'l'lf'l IA'I':I'\II'\ I hf\’\/\lf\f\l’ ™\ 1 IMI"\AI" "\'F :I"\h"'rL

intel cpu floating point per seconds? X !_, Ce)

All Images Shopping Videos News More ~

Generative Al is experimental. Learn more

The floating-point operations per second (FLOPS) of an Intel Core i7
processor can vary depending on the model and clock speed. On average, a
mid-range Intel Core i7 processor can perform around 100-200 GFLOPS
(billion floating-point operations per second). v

CPUs can execute floating point calculations, similarly to GPUs, but are
typically one or two orders of magnitude slower. For example, a modern GPU
can do up to ~2 Teraflops while an Intel is ~80 Gigaflops. ~

Q

Tools

JT

)l

Form Factor

FP64

FP64 Tensor Core

FP32

TF32 Tensor Core

BFLOATI16 Tensor Core

FP16 Tensor Core

FP8 Tensor Core

H100 SXM

34 teraFLOPS

67 teraFLOPS

67 teraFLOPS

989 teraFLOPS?

1,979 teraFLOPS?

1,979 teraFLOPS®

3,958 teraFLOPS?

Moore's Law

GPU-Accelerated
Computing

1.1X per year

: 8
1.5X per year
\

3 \""""vw' T
W e
Single-threaded perf é a8

1980 1990 2000
// .
40 Years of CPU Trend D.

mmmummmomumnuu«m.r.uuu.o.m.nowm.t.uummc.ucm a ollected for 2010-2015 by K. Rupp

The Redal Problem?@

100 GFLOPs/s A

1. Assume we use 0.5s to perform 50 FLOPs
2. We need to read 50x2=100 GB in the rest of 0.5s to keep the CPU busy

3. We need the CPU to read at a speed of 100GB / 0.5s = 200 GB/s

80 — 160 MB/s

Magnetic Hard Disk Drive (HDD

Memory/Storage Hierarchy
=

~100GB/s

~$5/GB
Non-Volatile RAM

~1Bs
~GB/s Flash Storage $200/TB

=
~200\?B s Magnetic Hard Disk Drive (HDD) :%g‘(fl'sB

~50MB/s ~PBs; ~$10/TB

26

Writing & Reading Memory Instructions

* Write
* Transfer data from memory to CPU

Movq %rax, %rsp
* “Store” operation

* Read
* Transfer data from CPU to memory
Mmovq %rsp, Jerax
* “Load” operation

27

Abstract Computer Parts and Data

Processor Store; Retrieve

Arithmetic
Control .
Retri _ Unit & Logic
etrieve; Unit

Process

Dynamic Random

Access Memory
(DRAM)

Bus

Store; Retrieve

Input Output Secondary Storage
Devices Devices (e.g., Magnetic hard

Input; Output; Retrieve

disk, Flash SSD, etc.)

Bus Structure Connecting CPU and Memory

* A busis a collection of parallel wires that carry address, data, and control
signails.

® Buses are typically shared by multiple devices.

oo

Register file

: ALU

System bus Memory bus

Main
memory

17

Bus interface

oo

Memory Read Transaction (1)

Register file

srax

10

: ALU

Bus interface

Load operation: movg A, %rax

1/0O bridge

A
N

* CPU places address A on the memory bus.

29

/

A

Main memory

N\

N
/

0

A

Memory Read Transaction (2)

Register file

srax

10

: ALU

Bus interface

/1

N

N

/

Load operation: movg A, %rax

1/0 bridge

4

X

N

N\

/

Main
memory
0
X A

* Main memory reads A from the memory bus,

retrieves word X, and places it on the bus.

30

Memory Read Transaction (3)

Register file

: ALU

X
i E Main memory
I/O bridge 0
Bus interface < > < > X A

Load operation: movg A, %rax

srax

* CPUreads word x from the bus and copies it iInto register $rax.

Memory Write Transaction (1)

Register file

srax y

10

: ALU

Bus interface

Store operation: movqg %rax, A

1/0O bridge

A
N

/

A

Main memory
0

N
e A

N\

* CPU places address A on bus. Main memory reads it and

walits for the corresponding data word o arrive.

32

Memory Write Transaction (2)

Register file

$rax

JIC

: ALU

Bus interface

N
/

A
N

Store operation: movqg %rax, A

1/0 bridge

y

Main memory
0

N
e A

/
N\

* CPU places data word y on the bus.

33

Memory Write Transaction (3)

Register file Store operation: movg %$rax, A
: ALU

srax y

ﬁ Main memory
1/O bridge 0
Bus interface < > < > y A

* Main memory reads data word y from the bus

and stores It at address A.

35

Basics of Processors

Q: How does a processor execute machine codece

* Types of ISA commands to manipulate register contents:

* Memory access: load (copy bytes from a DRAM address 1o
reqgister); store (reverse); put constant

* Arithmetic & logic on data items in registers: add/multiply/etc.;
bitwise ops; compare, etc.; handled by ALU

* Control flow (branch, call, etc.); handled by CU
® Caches: Small local memory to butter instructions/dato

If interested in more details: https://www.youtube.com/watch?v=cNN_tTXABUA

https://www.youtube.com/watch?v=cNN_tTXABUA

What is GPT doinge

GPT

a You

| cannot believe Artificial general intelligence is just a few Python files and 350GB of

weights

[0, 500, 32768, 1008, 922, ...]

!

Disk

o

PY

A few KBs

-+ —_

Parameters:

350 GB

!

[0, 25116, 1234, 5984, 6,...]

Q ChatGPT

It's understandable to be amazed by the progress in artificial intelligence, especially

when considering something as advanced as Artificial General Intelligence (AGI).

However, the reality is a bit more

dataset.

complex than just a few Python files and a large

List{integers]

&

List{integers]}

37

Example

But, how we can make this fast? What are

potential problems here?

Arithmetic done within Processors
Store; Retrieve

Retrieve; | |Registers
Process

Caches |&F D

Commands interpreted

Bus

/O for Display /0 fdr code .
le to be amazed by the progress in artificial intelligence, especially M O n i to r

when considering something as advanced as Artificial General Intelligence (AGI).

Store; Retrieve

| cannot believe Artificial
weights

The CPU-Memory Gap

The gap widens between DRAM, disk, and CPU speeds.

100,000,000.0
10,000,000.0
1,000,000.0
100,000.0
10,000.0

1,000.0

Time (ns)

100.0
10.0
1.0
0.1

0.0

38

— \Disk¢

SSD

B m———l
\j%i B
— CPU

1985 1990 1995 2000 2003 2005 2010 2015

Year

-Disk seek time
= DRAM access time
=CPU cycle time

-+ SSD access time
--SRAM access time
~-Effective CPU cycle time

Our problem, Simplified

<4 To fill the gap: memory hierarchy \/ tﬁ;

40

Core Question behind Many System Research

How exactly memory hierarchy solves the gape

Howe

41

Locality

®* The key to bridging this CPU-Memory gap is an important

poroperty of computer programs known as locality.

42

COpPVYI| V.S copy]i: copy a 2048 X 2048 integer array

vold copylj(long int src[2048][2048], long int dst[2048][2048])
{

long int 1i,73;
for (i = 0; i < 2048; i++) .
for (j = 0; j < 2048; j++) 4.3 milliseconds
dst[1][]J] = src[i][]];
}

vold copyji(long int src[2048][2048], long int dst[2048][2048])
{

long int 1i,7;
for (j = 0; j < 2048; j++) 31.8 milliseconds
for {i = D; 1 < 2048} i++)
dst[1][]J] = src[1][]];

43

Locality

®* Principle of Locality: Many Programs tend to use data and
INnstructions with addresses near or equal to those they have used

recently. O
* Temporal locality: D::I

® Recently referenced items are likely
to be referenced again in the near future

* Spatial locality: < l?
* |tems with nearby addresses tend EE'::I

to be referenced close together in time

44

Locality Example

num list = [1, 2, 3, 4, 5, 7]
sum = 0;
for (x in num list)
sum += X;
return sum;

® Data references

® Reference array elements in succession (stride-1 reference pattern).

® Reference variable sum each iteration.

®* |Instruction references

® Reference instructions in seguence.

* Cycle through loop repeatedly.

Spatial or Temporal
Locality?

spatial

temporal

spatial
temporal

Qualitative Estimates of Locality

int sum array rows (int a[M] [N])

{
Assuming row-major int i, j, sum = 0;
array for (i = 0; i < M; i++)
for (j = 0; j < N; Jj++)
sum += a[i] []];
return sum;
a a a a a a
Answer: yes [0] | « = « [[O] [[2] f = « - | [1] [M-1]f « < + [[M-1]
[0] [N-1]]| [O] [N-1] [0] [N-1]

Question: Does this function have good locality with respect to array ae

Locality Example

int sum array cols(int a[M] [N])

{

int 1, j, sum = 0;

for (j = 0; j < N; j++)
for (i = 0; i < M; i++) Answer: no, unless...

sum += a[1][]]-
return sum; M is very small

®* Question: Does this function have good locality with respect to array ae

[0 | ¢ = « ([[O | L] | = = | [1] [M-1]f = + -« |[M-1]
[0] [N-1]] [O] [N-1] [0] [N-1]

	Slide 1: DSC 204A: Scalable Data Systems Fall 2025
	Slide 2: Where We Are
	Slide 3: Q2: What does exponent and fraction control?
	Slide 4: Digital Representation of Data: Bias
	Slide 5: Q3: What is the difference between BF16 and FP16?
	Slide 6: Floating-point Representation
	Slide 7: Floating-point Number: normal vs. subnormal
	Slide 8: What is the minimum positive value?
	Slide 9: Some Special Values
	Slide 10: Summary of fp32
	Slide 11: Exercise
	Slide 12: Exercise
	Slide 13: Latest FP8
	Slide 14: FP4
	Slide 15: Why BF16 is better in ML/AI?
	Slide 16: Examples in the final exam: FP8
	Slide 17: Demystify ChatGPT
	Slide 18: Foundation of Data Systems
	Slide 19: Basics of Processors
	Slide 20: Basics of Processors
	Slide 21: Instruction
	Slide 22: How Fast is Processor (CPU and GPU)
	Slide 23: Moore’s Law
	Slide 24: The Real Problem?
	Slide 25: Memory/Storage Hierarchy
	Slide 26: Writing & Reading Memory Instructions
	Slide 27: Abstract Computer Parts and Data
	Slide 28: Bus Structure Connecting CPU and Memory
	Slide 29: Memory Read Transaction (1)
	Slide 30: Memory Read Transaction (2)
	Slide 31: Memory Read Transaction (3)
	Slide 32: Memory Write Transaction (1)
	Slide 33: Memory Write Transaction (2)
	Slide 34: Memory Write Transaction (3)
	Slide 35: Basics of Processors
	Slide 36: What is GPT doing?
	Slide 37: Example
	Slide 38: The CPU-Memory Gap
	Slide 39: Our problem, Simplified
	Slide 40: Core Question behind Many System Research
	Slide 41: Locality
	Slide 42: copyij v.s copyji: copy a 2048 X 2048 integer array
	Slide 43: Locality
	Slide 44: Locality Example
	Slide 45: Qualitative Estimates of Locality
	Slide 46: Locality Example

